A Novel Screening Workflow for Nitazene Analogs using LC-QQQ Precursor Ion Scan Acquisition

Amanda L. Pacana, MSFS, D-ABFT-FT Britni N. Skillman, PhD, F-ABFT

Department of Forensic Science
Sam Houston State University
Huntsville, TX 77340

Disclosure

The authors declare no conflict of interest or financial disclosures.

Nitazenes and the Opioid Crisis

2024 Q2 Opioid Trend Report: NPS Discovery

- 15 unique nitazene monographs published by NPS Discovery since 2019
- Over 40 different nitazene standards commercially available
- Rapid life cycles of analytes
 - Current trend: ring-substitutions of previously reported analogs
 - e.g., N-pyrrolidino protonitazene

The Need for New Methods

• ELISA 🗴

- No commercially available nitazene kits
- No known cross-reactivity with currently available kits
- LC-QTOF-MS 🛞
 - High capital costs
 - Increased maintenance
 - Time-consuming data processing

- LC-QQQ 🙋
 - Already available in many labs
 - Lower costs (install, maintenance, training)
 - Precursor ion scan (PIS)
 - Uses characteristic fragment ions
 - Previously applied to fentanyl analogs

Quadrupole 1: Scanning

Collision Cell

Quadrupole 3: Targeted *m/z*

Scope

Scope

Scope

Extraction and LC Methodology

 0.5 mL whole blood Prep • 50 µL NH₄OH 1 mL borate buffer Add • 3 mL 1-chlorobutane (*N*-butyl chloride) Add 15 min rotation Mix • 10 min centrifuge (4000 rpm) Transfer organic to clean conical tubes Isolate • Dry (40°C) under N₂ (~12 mins) Drv Reconstitute (200 µL) 90:10 mobile phase

Recon

	LC Conditions	
Mobile Phases	A: 0.1% formic acid with 5 mM ammonium formate in deionized water	
	B: 0.1% formic acid in acetonitrile	
Column	Agilent InfinityLab Poroshell 120 EC-C18 (2.1 x 100 mm, 2.7µm) + matching guard	
Gradient	0.25 min hold at 10% B 10% B → 25% B over 1 min 25% B → 50% B over 3 mins 50% B → 90% B over 0.75 min (2 min hold) 90% B → 10% B	
Injection Volume	5 μL	
Column Temperature	35°C	
Flow Rate	0.4 mL/min	

MS/MS Methodology

MS tested and optimized parameters:

- Scan range (m/z)
- Scan time (ms)
- Fragmentor (V)
- Collision energy (V)
- Cell acceleration voltage (V)
- MS2 Res

ESI+ Source Conditions			
Drying Gas	350°C 11 L/min		
Sheath Gas	400°C 12 L/min		
Nebulizer	40 psi		
Capillary	3500 V		
Nozzle	0 V		

Monitored Product Ions		
<i>m/z</i> 72 and 100	Metodesnitazene 4'-OH nitazene 5-methyl etodesnitazene Isotonitazene Protonitazene	
m/z 98	N-pyrrolidino etonitazene	
m/z 112	N-piperidinyl etonitazene	
m/z 104	Metodesnitazene-D ₄	

Method Development Results

MS tested and optimized parameters:

Product Ion (m/z)	Scan Range (<i>m/z</i>)	Scan Time (ms)	Fragmentor (V)	CE (V)
72.1	300-450	175	125	50
98.0	300-450	175	130	25
100.1	300-450	175	125	20
112.0	300-450	175	130	25
104.1 (ISTD)	300-350	150	120	20

MS2 Res	Wide (all)
Cell accelerator voltage	3 (all)
Gain factor	2 (time segment 2 only)

Chromatography

Validation and Acceptance Criteria

ANSI/ASB 036

- Limit of detection (using reference materials)
- Interferences (matrix, ISTD, commonly encountered analytes)
- Ionization suppression/enhancement
- Carryover
- Processed sample stability

Adopted from ANSI/ASB 098 and 113

- Tolerances established for peak shape, retention time, resolution
- Minimum of 1 diagnostic ion required for identification
- No ions present >50% of the target ion abundance in the sample
 - Unless also present in positive QC

Validation Results

Analyte (Precursor)	Product lons (<i>m/z</i>)	Limits of Detection (ng/mL)	Matrix Effects (%)*	Stability (hr)
NA () 1	72.1	0.5	-32.1	≥ 48
Metodesnitazene	100.1	0.5	-32.7	≥ 48
4 Oll nitonana	72.1	0.5	-49.1	≥ 48
4-OH nitazene	100.1	0.5	-50.5	≥ 48
5-methyl	72.1	0.5	-33.2	≤ 24
etodesnitazene	100.1	0.5	-35.0	≥ 48
Isotonitazene	72.1	0.5	-34.2	≥ 48
	100.1	0.5	-34.1	≥ 48
Protonitazene	72.1	0.5	-35.4	≥ 48
	100.1	0.5	-35.2	≥ 48
N-pyrrolidino etonitazene	98.0	0.5	-33.4	≥ 48
N-piperidinyl etonitazene	112.0	0.5	-50.9	≥ 48
Metodesnitazene-D ₄ *Results from matrix effects at low co	104.1	N/A	-33.0	≥ 48

^{*}Results from matrix effects at low concentration (5 ng/mL)

 3 samples previously confirmed for nitazenes from the CFSRE

- 20 samples prepared in-house by another analyst
 - Blinded to the extractor until after data analysis
 - Mimicked casework referenced in literature through:
 - 1. Differing concentrations based on potency
 - 2. Prevalence
 - 3. Combinations with other drugs of abuse
 - e.g., other opioids, novel benzos, and stimulants

Sample	Previous ID	Reported Concentration	QQQ PIS Positivity	lons detected above LOD (<i>m/z</i>)
CFSRE 1	Metonitazene N-desethyl isotonitazene	0.6 ng/mL 2.2 ng/mL	Metonitazene* N-desethyl isotonitazene**	72, 100 72
CFSRE 2	Protonitazene	3.6 ng/mL	Protonitazene	72, 100
CFSRE 3	Protonitazene Metonitazene	1.3 ng/mL 0.8 ng/mL	Protonitazene Metonitazene*	72, 100 72, 100

^{*}Analyte not included in method validation scope but identified with passing criteria (RT confirmed with standard)

- Identification of analytes not included in initial scope of study
- No interferences that impacted accurate identification
- 100% positivity rate (for both blind and authentic samples)

^{**}Analyte not included in method validation scope but presumptively identified with passing criteria

Sample	Nitazene(s) Added	QQQ ID(s)
Blind 1	Metonitazene	Metonitazene
Blind 2	N-pyrrolidino etonitazene	N-pyrrolidino etonitazene
Blind 3	5-methyl etodesnitazene	5-methyl etodesnitazene
Blind 4	Protonitazene	Protonitazene
DIIIIU 4	4-OH nitazene	4-OH nitazene
Blind 5	Protonitazene	Protonitazene
Blind 6	N-piperidinyl etonitazene	N-piperidinyl etonitazene
Dlind 7	Protonitazene	Protonitazene
Blind 7	Metonitazene	Metonitazene
Blind 8	None	ND
Blind 9	Isotonitazene	Isotonitazene
Blind 10	Metonitazene	Metonitazene

Sample	Nitazene(s) Added	QQQ ID(s)
Blind 11	None	ND
Blind 12	4-OH nitazene Isotonitazene	4-OH nitazene Isotonitazene
Blind 13	None	ND
Blind 14	Isotonitazene	Isotonitazene
Blind 15	None	ND
Blind 16	N-pyrrolidino etonitazene	N-pyrrolidino etonitazene
Blind 17	5-methyl etodesnitazene	5-methyl etodesnitazene
Blind 18	Metonitazene Metodesnitazene	Metonitazene Metodesnitazene
Blind 19	Metodesnitazene	Metodesnitazene
Blind 20	None	ND

Sample: CFSRE 1

Sample: CFSRE 2

Proposed Workflow for Unknowns Analysis

Proposed Workflow for Unknowns Analysis

Proposed Workflow for Unknowns Analysis

Discussion

- Method performance was evaluated and validated using guidance from ASB standards 036, 098, and 113
 - Method allowed for forensically-relevant detection limits
 - No interferences or carryover were observed
 - Ion suppression was observed but demonstrated no impact to LODs and other critical validation parameters
 - Most analytes/ions were stable for at least 48 hours (except 5-methyl etodesnitazene ≤24)
- Previously analyzed authentic samples were reinterrogated using this method
 - Analytes not in the validation scope but previously confirmed were identified
 - Analytes not previously confirmed were presumptively identified
- 20 blind specimens were prepared with various drug combinations containing nitazenes
 - All nitazenes were correctly identified using the method described

Conclusions

- A new precursor ion scan method was successfully developed for the broad identification of nitazene analogs in whole blood
 - Laboratories can use existing in-lab instrumentation for screening of nitazene analogs
 - Reduced suspect nitazene samples sent for confirmation testing
- The method can identify previously undetected compounds that were not evaluated at initial processing
 - Potential for retrospective data analysis
 - Broader detection of characteristic fragments can help identify undescribed analytes

Limitations

- Data processing software is not well-supported for this type of analysis
 - Specific workflows are needed to accommodate analysis
- More studies are needed to further develop rigorous assessment criteria and include additional nitazene analogs
 - Especially N-desethyl analogs
- May offset limitations of ELISA, but high-resolution screening is still preferred for unknown identification
 - However, lower LODs might be achieved with QQQ and libraries are not needed for initial data interrogation

Acknowledgements

- The Center for Forensic Science Research and Education
 - Dr. Alex Krotulski
 - Sara Walton

- Sam Houston State University Graduate and Professional School and Department of Forensic Science
 - Funding
- Colleagues
 - Dr. Britni Skillman
 - Sara Kuberski

Questions?

Amanda L. Pacana

Amanda.l.Pacana@gmail.com